3 resultados para Chemometrics, Data pretreatment, variate calibration, variate curve resolution

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agricultural crops can be damaged by funguses, insects, worms and other organisms that cause diseases and decrease the yield of production. The effect of these damaging agents can be reduced using pesticides. Among them, triazole compounds are effective substances against fungus; for example, Oidium. Nevertheless, it has been detected that the residues of these fungicides in foods as well as in derivate products can affect the health of the consumers. Therefore, the European Union has established several regulations fixing the maximum residue of pesticide levels in a wide range of foods trying to assure the consumer safety. Hence, it is very important to develop adequate methods to determine these pesticide compounds. In most cases, gas or liquid chromatographic (GC, LC) separations are used in the analysis of the samples. But firstly, it is necessary to use proper sample treatments in order to preconcentrate and isolate the target analytes. To reach this aim, microextraction techniques are very effective tools; because allow to do both preconcentration and extraction of the analytes in one simple step that considerably reduces the source of errors. With these objectives, two remarkable techniques have been widely used during the last years: solid phase microextraction (SPME) and liquid phase microextraction (LPME) with its different options. Both techniques that avoid the use or reduce the amount of toxic solvents are convenient coupled to chromatographic equipments providing good quantitative results in a wide number of matrices and compounds. In this work simple and reliable methods have been developed using SPME and ultrasound assisted emulsification microextraction (USAEME) coupled to GC or LC for triazole fungicides determination. The proposed methods allow confidently determine triazole concentrations of μg L‐1 order in different fruit samples. Chemometric tools have been used to accomplish successful determinations. Firstly, in the selection and optimization of the variables involved in the microextraction processes; and secondly, to overcome the problems related to the overlapping peaks. Different fractional factorial designs have been used for the screening of the experimental variables; and central composite designs have been carried out to get the best experimental conditions. Trying to solve the overlapping peak problems multivariate calibration methods have been used. Parallel Factor Analysis 2 (PARAFAC2), Multivariate Curve Resolution (MCR) and Parallel Factor Analysis with Linear Dependencies (PARALIND) have been proposed, the adequate algorithms have been used according to data characteristics, and the results have been compared. Because its occurrence in Basque Country and its relevance in the production of cider and txakoli regional wines the grape and apple samples were selected. These crops are often treated with triazole compounds trying to solve the problems caused by the funguses. The peel and pulp from grape and apple, their juices and some commercial products such as musts, juice and cider have been analysed showing the adequacy of the developed methods for the triazole determination in this kind of fruit samples.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

When it comes to information sets in real life, often pieces of the whole set may not be available. This problem can find its origin in various reasons, describing therefore different patterns. In the literature, this problem is known as Missing Data. This issue can be fixed in various ways, from not taking into consideration incomplete observations, to guessing what those values originally were, or just ignoring the fact that some values are missing. The methods used to estimate missing data are called Imputation Methods. The work presented in this thesis has two main goals. The first one is to determine whether any kind of interactions exists between Missing Data, Imputation Methods and Supervised Classification algorithms, when they are applied together. For this first problem we consider a scenario in which the databases used are discrete, understanding discrete as that it is assumed that there is no relation between observations. These datasets underwent processes involving different combina- tions of the three components mentioned. The outcome showed that the missing data pattern strongly influences the outcome produced by a classifier. Also, in some of the cases, the complex imputation techniques investigated in the thesis were able to obtain better results than simple ones. The second goal of this work is to propose a new imputation strategy, but this time we constrain the specifications of the previous problem to a special kind of datasets, the multivariate Time Series. We designed new imputation techniques for this particular domain, and combined them with some of the contrasted strategies tested in the pre- vious chapter of this thesis. The time series also were subjected to processes involving missing data and imputation to finally propose an overall better imputation method. In the final chapter of this work, a real-world example is presented, describing a wa- ter quality prediction problem. The databases that characterized this problem had their own original latent values, which provides a real-world benchmark to test the algorithms developed in this thesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two high-frequency (HF) radar stations were installed on the coast of the south-eastern Bay of Biscay in 2009, providing high spatial and temporal resolution and large spatial coverage of currents in the area for the first time. This has made it possible to quantitatively assess the air-sea interaction patterns and timescales for the period 2009-2010. The analysis was conducted using the Barnett-Preisendorfer approach to canonical correlation analysis (CCA) of reanalysis surface winds and HF radar-derived surface currents. The CCA yields two canonical patterns: the first wind-current interaction pattern corresponds to the classical Ekman drift at the sea surface, whilst the second describes an anticyclonic/cyclonic surface circulation. The results obtained demonstrate that local winds play an important role in driving the upper water circulation. The wind-current interaction timescales are mainly related to diurnal breezes and synoptic variability. In particular, the breezes force diurnal currents in waters of the continental shelf and slope of the south-eastern Bay. It is concluded that the breezes may force diurnal currents over considerably wider areas than that covered by the HF radar, considering that the northern and southern continental shelves of the Bay exhibit stronger diurnal than annual wind amplitudes.